

Selection of Personalized Patient Therapy through the Use of Knowledge-Based Computational Models That identify Tumor-Driving Signal Transduction Pathways

Paul van de Wiel, PhD CEO and Co-Founder InnoSIGN

Dutch Life Sciences Conference November 24, 2022 INTEGRATED SYSTEMS AND TECHNOLOGIES | AUTHOR CHOICE | MAY 29 2014

Selection of Personalized Patient Therapy through the Use of Knowledge-Based Computational Models That Identify Tumor-Driving Signal Transduction Pathways [REE]

Wim Verhaegh S; Henk van Ooijen; Márcia A. Inda; Pantelis Hatzis; Rogier Versteeg; Marcel Smid; John Martens; John Foekens; Paul van de Wiel; Hans Clevers; Anja van de Stolpe

Cancer Research, 2014

www.innosignbio.com/www.oncosignal.com

InnoSIGN, a precision medicine company, is a spin-off of Philips founded in March 2022

- Technology developed during 10 years by Philips
- InnoSIGN founded in March 2022 as an independent company
- Key shareholders: Casdin, LSA (US); Thuja, BOM, Philips (NL)
- Legal entities in NL and US
 - InnoSIGN BV: R&D, labs (ISO13485)
 - InnoSIGN Inc: Commercial, CLIA lab (future)
- R&D facilities at the High Tech Campus in Brainport Eindhoven

HILIPS
HILIPS

The mission of InnoSIGN is to make the promise of oncology precision medicine come true

Few patients benefit from genometargeted therapy

Selection of patients that benefit from targeted therapy is difficult

Annals of Oncology lume 32, Issue 7, July 2021, Pages 926-932

07 July 2021

The percentage cancer patients eligible for genome-targeted therapy increased from 5.13% in 2006 to 13.6% in 2020. Response rates increased from 2.73% in 2006 to 7.04% in 2020.

frontiers in Oncology

11 March 2021

The response rate to immunotherapy is still far from satisfactory and most patients are refractory to such treatment. In addition, escalating costs of cancer care and unnecessary immune-related adverse events also are pertinent considerations.

Current big data approaches link genomic data to patient information

disease symptoms

cell blueprint

Signaling pathways bridge the gap

disease symptoms

cell behavior

cell blueprint

Simplify complexity of genomics by focusing on the mechanism determining cell behavior

* Vogelstein et al., Science 2013: "Driver genes can be classified into 12 signaling pathways that regulate three core cellular processes: cell fate, cell survival, and genome maintenance."

Aberrant activity of signaling pathways can be caused by mutations in the DNA or by changes in the microenvironment of the cell

Microenvironment of the cancer cell

Phenotype

- Coordinated activity of 10-12 cellular signal transduction pathways enables cells to communicate and adapt function to control physiological processes.
- Abnormal activity of (multiple) signaling pathways represents a clinically actionable mechanism of disease (cancer, sepsis, auto-immune diseases, inflammatory diseases, and inherited diseases)

OncoSIGNal measures functional activity of signaling pathways based on the mRNA expression of the pathway transcription factor

OncoSIGNal

Measuring mRNA levels transcribed from direct target genes of the pathway transcription factors and translation by a Bayesian (probabilistic) model into quantitative pathway activity scores.

innosian

OncoSIGNal tests are available for the following pathways:

- ✓ Nuclear receptor pathways: Estrogen (ER), Androgen (AR)
- ✓ Growth factor pathways: PI3K, MAPK
- ✓ Developmental pathways: TGF β , Notch, Hedgehog (HH), Wnt
- ✓ Immune pathways: JAK-STAT1/2, NFkB

Measuring downstream signaling pathway activity to assess the effect of upstream mutations in DNA

Calibration of OncoSIGNal tests using ground truth cell line models

Quantifying dose-dependent drug inhibitory effects on pathway activity and cell growth in cancer cell lines

AR pathway in LNCaP

PI3K pathway in MCF7

Domain	Applications	Test	Benefits
	Breast and prostate cancer	Cancer tissue	Better treatment of hormone sensitive cancer patients
	Metastatic cancers	Cancer tissue	Identify effective targeted treatment options for metastatic cancer patients
Oncology	Immuno-oncology	Immune	Selection of patients that benefit from novel immunotherapies
4000 1000	COVID-19	• Immune	 Prediction of disease progression of patients infected with COVID-19 Assessment of cell-mediated immunity induced by vaccine candidates
Infectious diseases	Sepsis	Immune	 Early diagnosis and prediction of clinical outcome of sepsis patients Identify new or better treatment options
Auto-immune	Autoimmune disease (IBD, RA)	• Immune	 Identification of patients benefitting from immuno-modulatory drugs (anti- TNF / JAK inhibitors)
Drug development	Companion diagnostics	Cancer tissueImmune	 Prediction of response to targeted drugs (blocking signaling pathways) Prediction of response to immunotherapy drugs or therapies
	Preclinical research	Cancer tissueImmune	 Development of in-vitro disease models representing human physiology Identify mode of action of compounds in disease models

qPCR or RNA-seq gene expression data are translated by cloudbased software into pathway activity scores

Available as qPCR test and RNA sequencing data analysis service

OncoSIGNal RT-qPCR tests

Easy, fast and suitable for current clinical workflow. Developed under ISO13485

OncoSIGNal Data Service (RNA-seq data)

Analysis of whole transcriptome RNA sequencing data

OncoSIGNal cloud-based pathway activity analysis

OncoSIC	OncoSIGNal pathway activity scores					
Pathw ay	Pathway activity score [95% CI]	Norm al range	Per c.	Interpretation	Results	
ER	73.4 [70.5 – 75.8]	22 – 40	70 %	HIGH aberrant activity	40	
AR	30.2 [28.6 – 31.1]	25 - 34	40 %	No aberrant activity	34	
РІЗК	14.1 [12.8 – 15.5]	15 – 21	3%	No aberrant activity	15 14	
MAPK	14.7 [13.1 – 16.4]	3 - 15	25 %	No aberrant activity	15	
нн	48.3 [47.2 – 51.3]	20 - 50	70 %	No aberrant activity	50	
Notch	68.1 [65 – 70]	35 – 43	83 %	HIGH aberrant activity	43	
TGFβ	5.3 [2.0 – 6.9]	20 – 30	10 %	LOW aberrant activity	20	

Regulatory pathways: RUO, IVD or LDT?

RESEARCH MARKET

Research-use-only (RUO)

- Product can be used for research, drug development and (retrospective) clinical studies.
- Product cannot be used for clinical decisions.
- Not regulated

In-vitro diagnostic (IVD)

- Results can be used for clinical decisions
- Decentralized model: product can be executed by customers (e.g. hospitals, labs or patients)
- Well defined intended use and (validated) clinical utility
- Europe: CE-IVD (approval by notified bodies), US: IVD (PMA/510(k), approval by FDA)

Laboratory-developed test (LDT)

- US-specific regulation, results can be used for clinical decisions
- Centralized model: test is executed in CLIA-certified lab responsible for the design, validation and manufacturing
- Regulated by CLIA (not FDA), focus on procedures
- Common business model in US for high complexity tests

CLINICAL MARKET

OncoSIGNal pathway profiling identifies the tumor-driving signaling pathways, targetable with drugs

CANCER RESEARCH UK

innosian

Inda et al. Mol Cancer Ther (2020)

Pathway profiling is predictive for response of ER+ breast cancer patients to neo-adjuvant hormonal therapy

innosign

Low AR/Notch and high HH pathway activity predict poor PFS to AR-directed therapies in metastatic castrate-resistant prostate cancer (MATCH-R trial)

AR alterations in mCRPC. No statistically significant differences in genomic alterations between responders and non-responders to enzalutamide and abiraterone treatment. AR gene expression, and its transcripts AR-V7 (AR splice variant) and AR-FL (Full-Length) are not significantly different between responders and non-responders (Wilcoxon test). Similarly, IHC does not show different expression of AR between the two groups.

Standard genomic and transcriptomic analysis did not show significant differences between responders and non-responders to AR-directed therapy

✓ OncoSIGNal pathway analysis revealed that high HH and low AR and Notch pathway activity is related to resistance to AR-directed therapy

More actionable results in hard-to-treat (metastatic) cancers with OncoSIGNal compared to DNA sequencing

✓ 50% actionable results with DNA sequencing versus ~90% actionable results with OncoSIGNal

Presentations at AACR 2020, ASCO 2020, ASCO 2021 https://eithealth.eu/project/pacman/

innosian

Dutch Life Science Conference, November 24, 2022

Data-driven algorithms	Knowledge-based algorithms
 Selection of genes based on differential	 Selection of genes based on biology, confirmed in
expression in clinical data sets	cell line experiments
 Trained on (large amount of) clinical data, e.g.	 Trained on (limited amount of) data from ground
responders vs non-responders	truth model systems
✓ Dependent on quality of clinical data	 Dependent on quality of own (cell line) experiments
 ✓ Applicable to specfic use case related to the	 Applicable to multiple applications, based on
dataset(s) used for training	biological relevance
 Often no biological reasoning making clinical	 Biological reasoning making clinical adoption and
adoption and regulatory approval more difficult	regulatory approval easier

Thank you www.innosignbio.com