
HALLX BIOSCIENCE AS A SERVICE

R&D and Product Launch to commercialization

Dutch Life Science Congress November 2019 Agenda

Overview HALIX

CDMOs during clinical phase

Case study 1: Virus Manufacture

Case Study 2: Protein Production

HALIX's new facility

Continuous growth in a strong corporate structure

1959: HAL Allergy was founded in Haarlem

2002: Acquired by Droege Int. Group

2009: Relocation Head Office to Leiden Bio Science Park

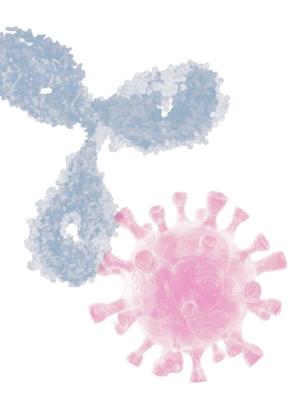
2011: Start CMO services within HAL Allergy

2012: Launch of HALIX B.V.

2018: Start construction activities of new building2019: Inauguration of state-of-the-art cGMP facility

DROEGE GROUP

The end-to-end service for your product


Service Portfolio

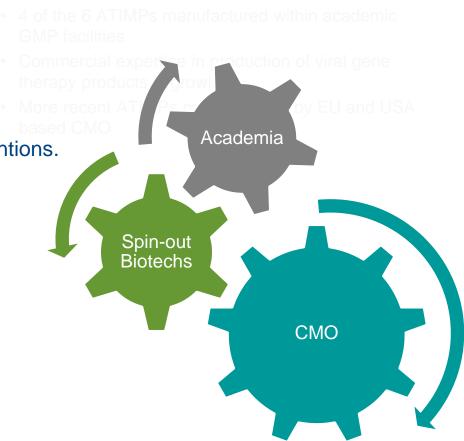
Agenda

Overview HALIX

CDMOs during clinical phase

Case study 1: Virus Manufacture

Case Study 2: Protein Production


HALIX's new facility

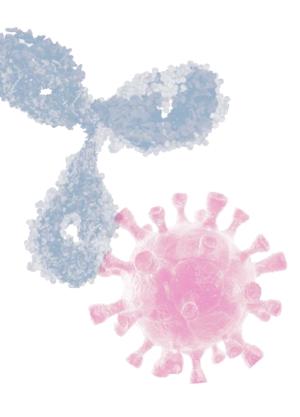
Partnership between stakeholders is critical to success

Combined expertise

- Academia which invents new options
- Spinout Biotechs which take ownership of these inventions
 - Scientific understanding
 - Product related expertise
- C(D)MOs safely and reliably produce these inventions.
 - Multiple projects performed
 - Seen pitfalls and successes
- Shared interest in successful project.
 - Shared project team
 - Open communication
 - True partnership

When can we help you with what?

LAV LOD


S.

HALIX BIOSCIENCE AS A SERVICE

Technology development	Pre-clinical	Phase 1	Phase 2	Phase 3
 Start talking Slot reservation? Process evaluation Manufacturable Scalable? 	 Process development & scale up Assay development Setting your specs Engineering batches Tox material Standards 	 MCB / MVS Lock down protocols! GMP DS and DP manufacture Assay qualification GMP stability studies Viral clearance (ph1) 	 Scale up WCB / WVS Is your CDMO your partner for the future? Is your process ready for commercial? (COGS / Assays /Formulation / presentation (lyo?) 	 Scale up to production size Process validation (!!) Assay validation Viral clearance (ph3)

Agenda

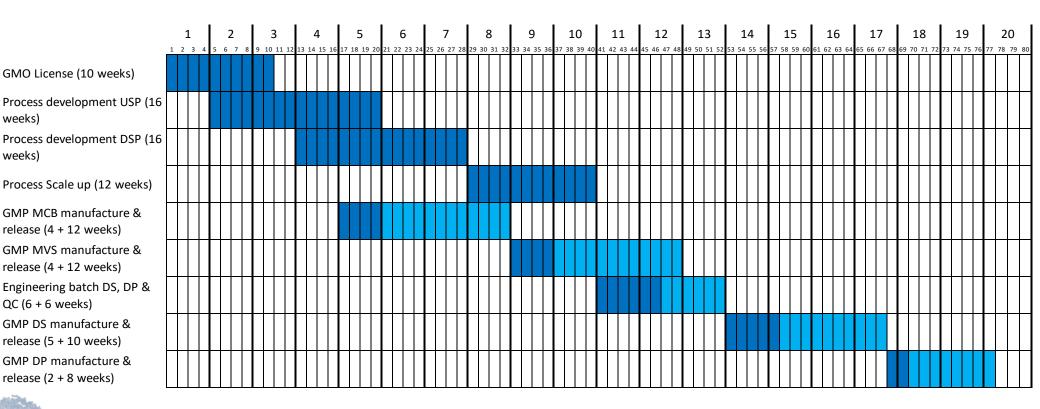
Overview HALIX

CDMOs during clinical phase

Case study 1: Virus Manufacture

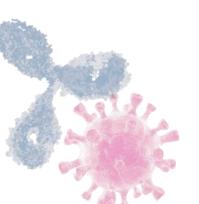
Case Study 2: Protein Production

HALIX's new facility


Case study 1: Virus Manufacture (1)

- Small biotech, founded by seasoned experts
- Cancer vaccine
- 2 viruses (prime and boost)
- VERO cell line (adherent) supports robust growth
- Simple yet efficient DSP (Benz / TFF / Chrom)
- Phase 1 batch of each virus requested

Timeline & project overview



Case study 1: Virus Manufacture (3)

- USP yield: 10E8-10E9 particles / ml
- Process contaminants (hcDNA HCP etc) reduction > 95%
- Drug substance: 50 times concentration of infective virus particles compared to BDS
- Final DP manufacture \rightarrow simple dilution and FF.

Case study 1: Virus Manufacture (3)

Final DP manufacture

s compared to BDS

Case study 1: Virus Manufacture (4)

• But...

- During engineering runs
 - Genetically instability suspected in one virus seed
 - Extended culturing confirmed, MVS not stable!

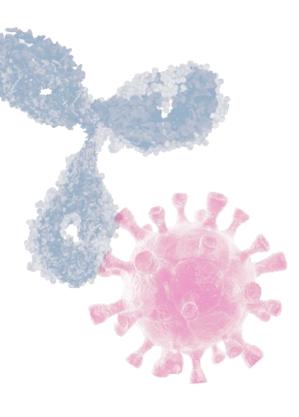
Case study 1: Virus Manufacture (4)

• But...

- During engineering r
 - Genetically
 - Extended cl

Case study 1: Virus Manufacture (5)

Solution lies in open communication and close collaboration!


- Re-planned production strategy & timelines to focus on other virus
 - Process designed to work for both viruses
- Reassigned planned production slots to other program
 - Minimal cost for slot cancelation
- Phase 1 trial initiated with stable virus

12 months later \rightarrow produce second (booster) virus (from new, genetically stable rVS)

In the end no time lost for customer & total additional CDMO costs < 100K

Agenda

Overview HALIX

CDMOs during clinical phase

Case study 1: Virus Manufacture

Case Study 2: Protein Production

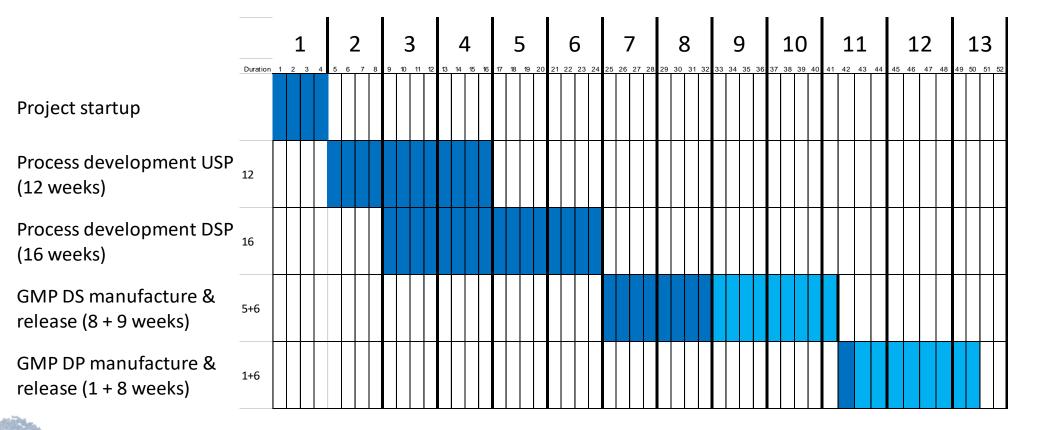
HALIX's new facility

Case study 2: Protein Manufacture (1)

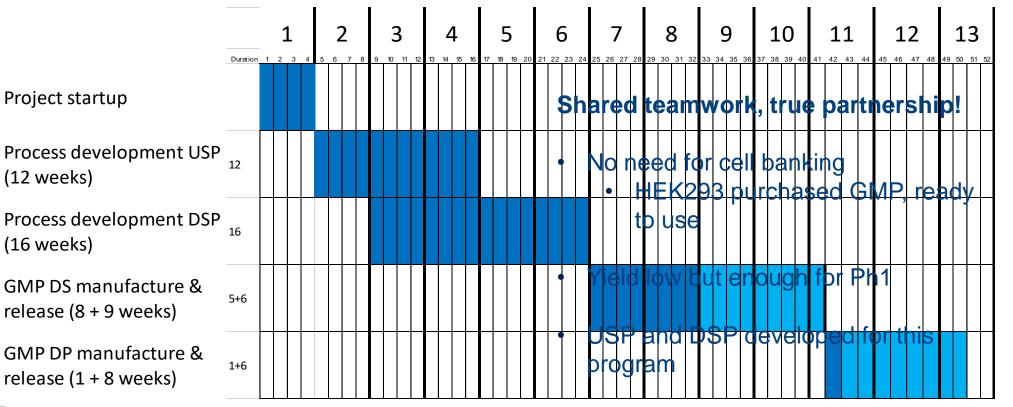
- Antibody variant (not MAb) for cancer indication
- Stable but Low yield
- High efficacy
- Phase 1 manufacture
- No stable cell line available
- Product binds to Protein A (Downstream process)

Time to phase 1 material (Protein product)

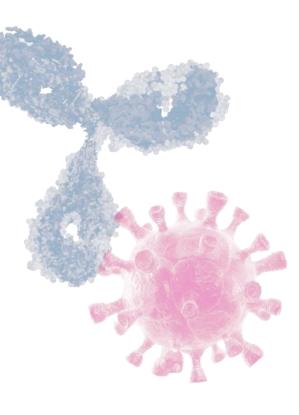
	1	L 3 4	8	.0	.1	L 2	13	14		15		16		17		18		19		20		80 8	21		22		88.89	23		24 93 94 95 96		
Cell line Development (52 weeks!)																																
Process development USP (12 weeks)																																
Process development DSP (12 weeks)																																
GMP MCB manufacture & release (4+12 weeks)																																
Engineering batch DS, DP & QC (5+ 8 weeks)																																
GMP DS manufacture & release (5 + 9 weeks)																																
GMP DP manufacture & release (1 + 8 weeks)																																


Case study 2: Protein Manufacture (2)

- University spinout
- Customer needs to initiate Ph1 rapidly, cannot wait 2 years for Ph I GMP material
 - Needs to meet milestone planning to unlock funding
- Transient transfection strategy!
 - HEK 293 cells (commercially available as GMP bank)
 - 20-40 CF 10 flasks
 - "Fit for purpose" DSP strategy


Case study 2: Protein Manufacture (3)

Case study 2: Protein Manufacture (3)



• Total timeline from intiation to FDP release aprox 12 months.

Agenda

Overview HALIX

CDMOs during clinical phase

Case study 1: Virus Manufacture

Case Study 2: Protein Production

HALIX's new facility

New Production Facility HAIX in the LBSP

Construction details on the new LSBP CDMO facility

General Facility Data

Construction Building

- > Construction designed for industrial use (5 layers)
- > Maximal floor load 2,000 KN/m2
- > Equipped and prepared for future expansion
- $> 1,300m^2$ floor space per layer

Design Compliance

- > Pharmaceutical: EU / FDA guidelines
- > Containment BSL2/3: Dutch law, NIH

State-of-the-art cleanrooms and GMP production capabilities

Technical Details - New Facility

Clean rooms

> Flexible:

- > Single projects and commercial manufacturing
- > Box in box principle
 - > Maintain stable climate in each cleanroom

> Compliant

- > Separate air treatment for each cleanroom
- > Uni-directional flow of personal and material

> Safe

> Decontamination using fumigation systems

GMP Production Capacities

- > 1,000 L single use bioreactors in grade BSL2
- $> 250 \ \text{L}$ single use bioreactors in grade BSL2

Grand opening of building 21 November 2019

