

CAELUS H E A L T H

FMT-based discovery From platform to product

DUTCH LIFE SCIENCES CONFERENCE 2018 MICROBIOME THERAPEUTICS Oegstgeest, 29 November 2018

TOPICS

FMT-based discovery Cardio-metabolic disorders Diabetes Mellitus and NASH/NAFLD

Pipeline of microbiota-based products Clinical evaluations Metagenomics

Platform approach Reverse engineering Leads from FMT-studies Systematic in-vitro and in-vivo screening of new leads

First company with novel therapeutic strains to reduce cardio-metabolic disorders

Market data

Global pandemic of obesity and Diabetes mellitus

Huge burden for both subjects & society - health care budgets

Strong need for early intervention

Prevalence estimates of diabetes, 2025

SOURCE: DIABETES ATLAS THIRD EDITION, © INTERNATIONAL DIABETES FEDERATION, 2006

Metabolic syndrome or pre-diabetes

1 out of 3 individua Syndrome develops

Diabetes mellitus is disorders

This needs to be str

Preferrably by early treatment

Time

Insulin resistance
Failed beta cells
Hyperglycemia

From platform to pipeline

LEAD DISCOVERY

- FMT in cardiometabolic field (MetS, NASH)
 - Biostatistics Datamining

LEAD EVALUATION

- Validated in-vitro & in-vivo models
 - Genomics and metabolomics

PIPELINE MetS/Type 2 diabetes

FMT from lean donor – improves insulin sensitivity

Whole body insulin sensitivity increased

Transfer of Intestinal Microbiota From Lean Donors Increases Insulin Sensitivity in Individuals With Metabolic Syndrome, Vrieze et al, Gastroenterology 2012

Same donor В FMT 1 FMT 2 FMT 3 FMT 4 FMT 5 SNV distribution an % across speci 100 50-(meen % 2 14 42 84 2 14 42 84 2 14 42 84 0 84 2 14 42 84 14 Days after FMT SNVs observed over determinant positions Donor only Donor & recipient Recipient only Non-determinant Assignment error

Retrieved from: Sciencemag.org

Durable Coexistance of Donor and Recipient Strains after Fecal Microbiota Transplantation, Simone S. Li et al, Science 2016

One stool does not fit all

FMT from lean donor – improves insulin sensitivity

Whole body insulin sensitivity increased

Figure 3: Rd values by patient over time

Increased Rate of Disappearance (Rd)

Transfer of Intestinal Microbiota From Lean Donors Increases Insulin Sensitivity in Individuals With Metabolic Syndrome, Vrieze et al, Gastroenterology 2012

One stool does not fit all

Retrieved from: Sciencemag.org

Durable Coexistence of Donor and Recipient Strains after Fecal Microbiota Transplantation, Simone S. Li et al, Science 2016

Beneficial changes in small intestinal *E. hallii* after fecal transplant

Remarkably high correlation of beneficial gene expression was linked to the abundance of relatives of *E. hallii*

The abundance of relatives of *E. coli* was linked to damaging gene expression

Demonstration of colonisation resistance versus new species

Transfer of Intestinal Microbiota From Lean Donors Increases Insulin Sensitivity in Individuals With Metabolic Syndrome, Vrieze et al, Gastroenterology 2012

Major change in insulin sensitivity after *E. hallii* treatment

An animal study in db/db mice comparing the effect of 4 week intervention with active *E. hallii* led to a close-to-significant increase in the ability of insulin to stimulate Rd* Rd = Rate of disappearance measure of peripheral insulin sensitivity

Significant dose-depending improvement of metabolic parameters in mice.

Insulin sensitivity assessed by HOMA-IR and Hyperinsulinemic clamp

Study of increasing dose levels in male subjects with Metabolic Syndrome (n=9 per group)

DIME study – safety & efficacy #1

Excellent safety profile

No serious adverse events, no diarrhoea

No significant changes in safety parameters (biochemistry, hematology and CRP)

Average increase in peripheral insulin sensitivity of 23% in middle dose group

Responders - Rate of disappearance (Rd)

Number of responders increased from low dose (2/9) to high dose (5/9).

Implicates need for further selection of subjects in future studies and/or stratification for diversity and/or baseline levels of microbiota used as intervention.

DIME study – safety & efficacy #2

Clinical marker	Rho	P-value
Rd	0.41	0.044*
Rd change	0.39	0.061
Relative Rd change	0.40	0.055

Significant correlation of administered E hallii with change in peripheral insulin senstivity

Metagenomics analysis of the DIME study shows:

 \mathbf{O}

Significant increase in insulin sensitivity (Rd)

Close to significant relative Rd change

Development overview and current status

Development based on

- FMT as discovery tool (MetS/T2D, T1D, NAFLD)
 - FMT in Metabolic Syndrome -> first leads
- Screening leads @ WU & JLABS incubator lab

Registration and Commercialization

- Single strain: food supplements
- Combined/consortia: pharma products

Caelus product pipeline							
		FMT-discosvery	in-vitro	in-vivo	clinical development		
E. halllii	Metabolic syndrome						
Intestinimonas	Type 2 diabetes			→			
Microbiota intervention	Type 1 diabetes				→		

H E A L T H

CONTACT

Luc Sterkman MD, CEO

www.caelushealth.com Email: l.sterkman@caelushealth.com +31 (0) 6 229 79 249

