Next Generation Cancer Diagnostics For First Time Right Therapy Choice

Anja van de Stolpe

Paradigm shift in cancer treatment towards personalized treatment

Chemotherapy for all

therapy targeting **cancer pathophysiology** of individual patient

Cancer pathophysiology: 12 signal transduction pathways **drive cancer**

New "targeted" drugs target signal transduction pathways

Need for diagnostic tests

to identify activity of each of these 12 signal transduction pathways in a cancer tissue sample

If we know which pathway is active in the tumor we know which therapy will be effective for the patient **Our solution**

Pathway analysis for identification of active pathways in any cancer tissue sample

based on cell biology knowledge, not data-mining PHILIPS

3

We simplify cancer characterization for therapy selection

Because you do not want to treat genotype, but phenotype!

Cancer tissue

RNA

For dummies.....compare a cell with a bakery

Pathway model development and validation using "ground truth" samples

Example: Wnt pathway model

Models can be used across different cancer types

Wim Verhaegh, et al. Cancer Res 2014 Jun 1;74(11):2936-45. Wim Verhaegh, Anja van de Stolpe. Editorial, Oncotarget, 2014;5(14):5196-7.

Clinical utility: selection of most effective therapy

Example: Breast cancer patients

Choose therapy based on pathway analysis, rather than only subtyping

Clinical utility: monitoring therapy response

Example: ER positive breast cancer patients (luminal A)

• *neoadjuvant anti-estrogen therapy prior to surgery*

Poster SABCS 2015

Pathway analysis after treatment to measure therapy response

Clinical utility: prognosis

Example: ErasmusMC patients with primary metastasized breast cancer, treatment with tamoxifen

time (months) 20 M1 ER+ patients with 1st line tamoxifen

Active Hedgehog Pathway indicates bad prognosis.

Clinical utility: immune response typing for choice of immunotherapy

Example: Patients with brain tumors (tumor type in abstract AACR 2017)

Active NFKB pathway indicates active immune response

Can be run in hospital diagnostic lab

mRNA measurement	Cancer tissue/cells	
Affymetrix microarray	Fresh Frozen	Affymetrix service provider
Multi RT-qPCR plate	Formalin Fixed Paraffin Embedded	Routine lab equipment
RNA seq	Formalin Fixed Paraffin Embedded	Routine lab equipment

How to develop for **all cancer types**?

Available: data of patient samples from thousands of clinical studies, with associated publications, all cancer types

- Exploratory pathway analysis for cancer of choice
- Define potential clinical utility
- Initiate clinical collaboration

Intellectual property status: 18 patents filed, 2 granted (2016)

Evaluation of applications with clinical partners

- Clinical evaluations: breast, prostate, ovarian, endometrium, esophageal cancers
- Exploratory studies: brain tumors, children's tumors, hematological malignancies, cervical, rectal, bladder cancer

Clinical Adoption and Go to Market

\rightarrow Partnering opportunities

value

Clinical Adoption and Go to Market

Take away message

Proprietary diagnostic Pathway Analysis: based on cell biology knowledge Towards best therapy choice for each patient with cancer

Applications:

- *First time right* selection of most effective therapy
- Monitoring of therapy response/resistance
- Prognosis

Clinical applications:

- All cancer types
- All sample types
- All measurement modalities (Microarray, RNAseq, qPCR)

Acknowledgements

Philips Research

Research

- Marcia Alves de Inda
- Laurent Holtzer
- Henk van Ooijen
- Monique Stoffels
- Anja van de Stolpe
- Wim Verhaegh

Development

- Eveline den Biezen
- Anne van Brussel
- Janneke Wrobel
- Rick Velter
- Dianne van Strijp

Business Development

- Paul van de Wiel
- Sigi Neerken
- Jos Rijntjes

Erasmus MC, Rotterdam

- John Foekens
- John Martens
- Stefan Sleijfer

LUMC, Leiden

- Peter Kuppen
- Cock van de Velde

Hubrecht Institute, Utrecht

Hans Clevers

UMCU, Utrecht

Boudewijn Burgering

